
APPROXIMATE SOLUTION OF A DIFFUSION MIXING MODEL FOR 

STATIONARY SYSTEMS 

T. Blikle, Ya. Fyulep, 
and T. Viraz 

UDC 66.096.5 

The possibility of approximate modeling of a stationary reactor with mixing by 
a system of differential equations is examined. 

A system of conjugate second-order differential equations whose autonomy is due to the 
member-sources must often be solved in applied chemistry. High-order reactions occurring in 
a reactor of continuous operation, some absorbing and extraction processes, etc., character- 
ize such systems, for example. 

Differential equations of the kind mentioned can usually be integrated numerically only, 
which results in significant difficulty in both conjugation of the parameters and in optimi- 
zation of the processes. This is namely why three models, which just approximately describe 
the process but are convenient for processing the results obtained in the following cases, 
are used extensively: 

I. Weak Mixing. The terms with the second derivative, which takes account of mixing, 
is discarded, i.e., pure convection is assumed whereby the equation becomes a first- 
order equation. 

2. Medium Intensity Mixing. The source is linearized and the equation becomes linear. 

3. Strong Mixing. Ideal mixing is assumed, and the diffusion equation therefore goes 
over into an algebraic equation. 

An estimate of the error in the final result due to use of the hypotheses taken is hence 
given quite rarely. 

Among the other type are models in which the mixing is taken into account by the intro- 
duction of recirculation, a cascade of total mixing reactors, etc. However, even in these 
models it is complicated to take account of the effect of a change in the mixing coefficient, 
and it is almost completely unknown how much the solutions differ for the different models. 

It is hence expedient to develop an approximate method within whose framework only 
first-order differential equations must be solved; it is simple to take account of the in- 
fluence exerted by a change in the magnitude of the mixing coefficient, and there is the 
possibility of estimating the error of the approximation. 

Henceforth, we consider the case of just one variable to be more explicit, however, we 
note that this method can easily be applied also to the case of the usual conjugate systems 
of differential equations containing several dependent variables. 

A stationary reaction proceeding in a constant operation mixing reactor whose length is 
L can be simulated by using the following differential equation: 

Ax" + Bx' + f (x) = O. (1) 

Here A plays the part of the mixing coefficient, B is the linear velocity, x is the concen- 
tration dependent on the coordinate z (0 ~ z ~ L), and f(x) is a source function whose form 
depends on the order of the reaction. 

In applied chemistry this equation is usually solved for Danckwerts boundary conditions 

lim(Ax' + Bx) = Io, "Ax' (L) = 0. (2) 
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The crux of the approximation proposed here is that we find the solution of a first- 
order differential equation with the initial condition 

py'+[ (~=0 ,  y ( O ) = y o  (3) 

instead of solving a second-order differential equation satisfying the boundary conditions 
(2). 

An estimate is given below of the deviation of the function x from y and the parameters 
yo and B in (3) are selected in such a way that it would be minimal. 

The solution of (3) can be taken as approximate. Moreover, a specific physical meaning 
can be ascribed to it: it simulates the reaction proceeding in a reactor without mixing. 
Therefore, we not only obtain a certain approximate computational method but also the depen- 
dence which can effectively be used to determine to what extent the initial condition and 
the reaction flow rate can be altered so as to diminish the influence of the fact that mix- 
ing has not been taken into account, 

Let us first examine the inhomogeneous linear equation similar to the differential 
equation (I): 

Ax" = Bx'  + Cx = - -  f* @). 

where ~, 

(4) 

This differential equation can be solved in quadratures and to satisfy the conditions (2) 
L 

.,%#,~--- L~e",~ [ ;L,ze~.,(L_~q 

1 { ~,eX'LeX'z--Zte x'Lex'z io + o 
x (z) - ~ X~ eX, z- - -  ~,~ eX, L ~,~ eX, L =- ~,~ eX, t. 

1 ; [#,(*-e) - -  e~,'~"~, ]/* tD d[ } , (5) 
0 

and ~2 are the roots of the algebraic equation 

AX ~ + B X +  C = 0. (6)  

It should be noted that solution (5) permits determination of the error caused by lin- 
earizing the source term in (I). 

For a homogeneous linear differential equation 

py' + cy = - -  g* (z), (7) 

similar to differential equation (3), the solution can be found in the same manner 

C Z e 

y ( z ) = y o e - - V  z 1 ~ 7-(~-~) , e g (Dd~. (8) 
P 

0 

Le t  t h e  r e q u i r e m e n t s  f * ( z )  = f ( x ( z ) ) ,  g * ( z )  = f ( y ( z ) )  be s a t i s f i e d  and l e t  t h e  c o n s t a n t  
c be zero. It is seen that (5) relates the integral equation (9) to the differential equa- 
tion (I) for the solution x(z) satisfying conditions (2). For differential equation (3), we 
obtain an integral equation for the solution y(z) satisfying the initial condition in (3) 
from (8) : 

x(z) = ~ I o -  f(x(~))a~ - e -~-~-"~ 

which permit the error estimate 

0 z 

v(z)  = Vo - -  - 6  f (v(~)) a~. 
0 

a (z) = x (z) - -  v (z). 

Le t  us s u b t r a c t  (10)  f rom (9) 

z L B 

1 ~ l !  - ~ e-A -'~-O 
Ix ( z ) - -  V (z)] + - e -  If (x (D) - -  f (V (D)] d~ + B J 

0 0 

i f  (x (~))-- f (v (~))] d~ = - -  - -  
I0 

y o +  
B 

(~o) 

(11) 
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+ 13 B -- B- f (y (~)) ~ '  
O z 

Let us assume that the source function has a continuous derivative everywhere. 
according to the Lagrange theorem of the mean we have 

f(x)-- f(y) =f'(D(x--y) 
Hence, (12) is converted to the form 

L 

~A i t~ (z) = j' K(z ,  ~) (~) ct~ = o (z), 
0 

i 1 f, K(z, g)= - f f  (~*), L>~z>~>~O, 

I n 
I -N-  f' (~**) ' 

(~-z) 

where ~* and ~i** are numbers between the values of x and y in conformity with (]2) and 

f f ea-(~-z)~(y(~))c~' O = I o  1 1 ] 1 

0 z 

Equation ( i 3 )  permits an error estimate. Let us assume that 

L 

sup. [ I K (z, ~) I t~ = L -- sup f' (g (z)) < 1, 
. zero,L] ,J B zstO,Ll 

0 

then  
L L 

sup I 0 (z) l = sup [A (z) + j" K (z, ~) A (~) d~ ! >/ sup I A (z)]-- sup ~ I K (z, ~)[ d~ sup I A (z) 1, 
z~(0,L~ z(~(0.L] ~ 0 ~ ( 0 , L ]  z~(O,L) 0 z~( 0,L] 

from which 

sup IA(z)t ~ 
~(0,L] 

sup t O(z) l 
~(0,t] 

1'-- L _  sup [' (~ (z)) 
/~ ~(0,t] 

(12) 

Then 

(13) 

(~4) 

(15) 

(16) 

(17) 

( ]8)  

There is a possibility for a direct computation of the values of the parameters B and 
Yo by finding the absolute (not local) maximum of the function 0(z) determined by (l 5), for 
fixed values of Yo and B and further minimization of these values in 8 and Yo. However, this 
method is not applicable in the general case since it is extremely tedious even for the sim- 
plest specific functions f (constants, linear). The complexity is that the values of the 
argument governing the extremal values of the function 0(x) vary strongly as a function of 
the parameters yo and B. 

Therefore, another means should be selected for the conjugation of the parameters. Let 
us convert (15) as follows: 

L L 

(' + 
B Yo + ~ B ~ B -B- f(y(~))d:. (19) 

0 z 

It is hence seen that the first three members in the right-hand side of the equation are in- 
dependent of z, while the fourth member vanishes for z = L. We determine the parameters 8 
and yo from the assumption that the part of e(z) independent of z vanishes while the fourth 
term can be estimated easily. Let the source function f not change sign and let 

f~a~ = s~p,~ I t (y (z)) 1. 
ze( , ] 

B o)- " ,1 1 + l__e -A- d~<~ 
-- fma, ~ B B 

0 

(20) 

Then 
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F i g .  2 
I n i t i a l  c o n d i t i o n s  as a f u n c t i o n  o f  t he  number Pe: 

2) [1 -- q ( P e ) ] .  

Velocity as a function of Pc. 

I) 

L B L B 

z 0 
(2~) 

The plus and minus signs in the exponent in (21) define the positive or negative parts of the 
functions in the parentheses: 

f e (x), if e (x) >~ 0, g+ (x) 
o, if g ( x ) < O ;  

f - g ( x ) ,  if g ( x ) < O ,  (22)  
g-(x) 

I o, u g(x) >~o. 

The best estimate of the absolute value is obtained when the lower and upper bounds pre- 
sented above differ only in sign. Hence 

z, B ~ 1 
{ ' ( I  1 + l - e a - ~ ) d ~ = 0 ,  ~ = B  A B " (23) 
J\o I~ B B ~- -  - ~ U  (e'-X- L _ ] )  

The following estimate is obtained for such a value of 13 
t B 

l j( +, 1 j B - f f  . f (y(~))a~ -< 
Z 

d -  B_ ~ 1 In A aL Lfmax " B L  " 
-B'L-- -BL--- (e B L  B ~ . ( 2 4)  

I f  t h e  sum o f  t h e  f i r s t  t h r e e  t e r m s ,  i n d e p e n d e n t  of  z,  i n  t he  e x p r e s s i o n  f o r  0 e q u a l s  z e r o ,  
then (24) is the upper bound of 1el, i.e., yields sup 181. This is assured by the algebraic 
equat ion 

I o [  A ~L ] A nL 
yo = -B- I - -  --BL-(e --A- --1) + --ffL- (e a _ l ) y c .  (25) 

Let us introduce the following notation 

BL _pe(>O), l--e -pc =q(Pe), 
A Pe 

In 1 = r (Pe). 
Pe Pe Pe ( 2 6 ) 

The r e s u I t s  a re  ex t ended  as  f o l l o w s  in  t h i s  n o t a t i o n .  The s o l u t i o n  of  d i f f e r e n t i a I  
e q u a t i o n  (1) s a t i s f y i n g  the  bounda ry  c o n d i t i o n s  (2) can b e s t  app rox ima te  one of  the  s o l u t i o n s  
of  t h e  d i f f e r e n t i a l  e q u a t i o n  (3) to  i t s  i n i t i a l  c o n d i t i o n  f o r  which 

. - - -  tO 
1 , Y0 = (l - -  q) -B- + qYL �9 (27) = B l _  q 

The d i f f e r e n c e  be tween the  a p p r o x i m a t e  and e x a c t  s o l u t i o n s  can be g i v e n  i f  (16) i s  s a t i s f i e d ,  
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Fig. 3. Error coefficient of the ap- 
proximation as a function of the number 
Pe. 

and then 

sup lx (z ) - -Y(~  l ~  r  (28) 
~(o,Ll f l - - -  sup II' (~(z))l 

I t  i s  seen t h a t  the  d i f f e r e n t i a l  e q u a t i o n  and i n i t i a l  c o n d i t i o n  in  (3) cor respond  aga in  
t o  t he  r e c i r c u l a t i o n  model when the  pa rame te r s  a re  s e l e c t e d  a c c o r d i n g  to  (27).  I t  i s  shown 
in F igs .  1 and 2 in  what manner the  p a r a m e t e r s  of  the  approximate  r e c i r e u l a t i o n  model depend 
on the characteristic mixing parameter of the initial diffusion model, the number Pe. A 
relative approximation error is given in Fig. 3 as a function of Pc. For the Pe encountered 
in practice, this quantity is ordinarily sufficiently small, hence the error estimate is de- 
termined by another factor dependent on the remaining parameters. 

It is perfectly evident that both the solution (9) of the differential equation (]) and 
the error estimate (28) diverge in the case A § 0, and conversely, the solution (10) of the 
differential equation (1), obtained as an approximation, exists even in the case A = 0, where 
the other solutions converge to it as A § 0. Hence, differential equation (3) should be 
considered the best mathematical model of the process in this sense. 

In many cases condition (16) imposes too strong a constraint. However, weakening it 
need not be considered here since uniqueness of the solution is not assured in this case. 
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